
Polymorphism: Function and Operator Overloading in C++

Polymorphism is one of the key principles of Object-Oriented Programming (OOP) and plays

a significant role in C++ programming. The term polymorphism means "many forms" and

refers to the ability of functions, methods, or operators to behave differently based on their

context. In C++, polymorphism is primarily implemented in two forms: compile-time

polymorphism and run-time polymorphism. This note focuses on compile-time

polymorphism, which includes function overloading and operator overloading.

Function Overloading

Function overloading is a feature in C++ that allows multiple functions to have the same

name but differ in terms of the number or type of their arguments. It enhances code

readability and reduces the need for complex naming conventions. Function overloading is

resolved at compile time, and the compiler decides which function to invoke based on the

arguments passed to it.

Characteristics of Function Overloading:

1. Same Name, Different Signatures: Functions must have the same name but a

different number or type of parameters to be overloaded.

2. Return Type Irrelevance: The return type of a function does not play a role in

function overloading. For example, defining two functions that differ only by their

return type will result in a compilation error.

3. Scope-Specific Overloading: Function overloading is applicable only to functions in

the same scope.

Syntax Example:

#include <iostream>

using namespace std;

// Function to calculate the area of a rectangle

int area(int length, int width) {

 return length * width;

}

// Overloaded function to calculate the area of a square

int area(int side) {

 return side * side;

}

// Overloaded function to calculate the area of a circle

double area(double radius) {

 return 3.14159 * radius * radius;

}

int main() {

 cout << "Area of rectangle: " << area(5, 10) << endl;

 cout << "Area of square: " << area(7) << endl;

 cout << "Area of circle: " << area(5.5) << endl;

 return 0;

}

In this example, the area() function is overloaded three times to handle different shapes

(rectangle, square, and circle). Based on the arguments provided, the compiler determines

which version of the function to execute.

Operator Overloading

Operator overloading allows built-in operators in C++ (such as +, -, *, =) to be redefined for

user-defined types. This makes custom data types (e.g., classes) behave like built-in types

when used with these operators. Operator overloading is achieved using special functions

called operator functions.

Characteristics of Operator Overloading:

1. Customization for User-Defined Types: Operators can be redefined to perform

specific operations on objects of user-defined classes.

2. Syntax and Behavior Consistency: The syntax of the overloaded operator remains

the same as the built-in operators, maintaining code readability.

3. Operator Restrictions:

o Not all operators can be overloaded (e.g., ::, .*, sizeof).

o Overloading operators does not change their precedence or associativity.

4. Friend Function Option: Some operators (like << and >>) can be overloaded using

friend functions to allow non-member access to private or protected members.

Syntax Example:

#include <iostream>

using namespace std;

class Complex {

private:

 double real;

 double imag;

public:

 // Constructor

 Complex(double r = 0.0, double i = 0.0) : real(r), imag(i) {}

 // Overload '+' operator

 Complex operator+(const Complex& obj) {

 return Complex(real + obj.real, imag + obj.imag);

 }

 // Overload '<<' operator for displaying

 friend ostream& operator<<(ostream& out, const Complex& obj) {

 out << obj.real << " + " << obj.imag << "i";

 return out;

 }

};

int main() {

 Complex c1(3.5, 2.5), c2(1.5, 3.0);

 // Using overloaded '+' operator

 Complex c3 = c1 + c2;

 // Using overloaded '<<' operator

 cout << "Result: " << c3 << endl;

 return 0;

}

In this example, the + operator is overloaded to perform addition on complex numbers, and

the << operator is overloaded to display the result.

Advantages of Function and Operator Overloading

1. Enhanced Readability: Function and operator overloading eliminate the need for

separate function names for similar operations, resulting in cleaner and more intuitive

code.

2. Improved Code Reusability: Reusing the same function or operator name for

different purposes simplifies code maintenance.

3. Better Integration with OOP Principles: Operator overloading enhances

encapsulation by allowing user-defined types to integrate seamlessly with existing

operators.

